

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 6th Semester Examination, 2023

DSE-P4-MATHEMATICS

Time Allotted: 2 Hours

Full Marks: 60

The figures in the margin indicate full marks. Symbols have their usual meanings.

The question paper contains DSE-4A and DSE-4B. Candidates are required to answer any one from the two courses and they should mention it clearly on the Answer Book.

DSE-4A

DIFFERENTIAL GEOMETRY

GROUP-A

Answer any *four* questions from the following

 $3 \times 4 = 12$

- If $\vec{r} = \vec{r}(s)$ is the position vector of a point *P* with arc-length as parameter on a 1. curve- γ , then show that $\kappa^2 \tau = [\vec{r}', \vec{r}'', \vec{r}''']$.
- 2. Obtain the equation of the circular helix $r = (a \cos u, a \sin u, bu), -\infty < u < \infty$, where a > 0, referred to s as parameter.
- 3. Determine f(u) so that the curve $r = (a \cos u, a \sin u, f(u))$ shall be a plane.
- 4. Find the involutes of a helix.
- Calculate the torsion of the cubic curve $r = (u, u^2, u^3)$. 5.
- Show that the surface $e^z \cos x = \cos y$ is minimal. 6.

GROUP-B

Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
7. Show that the radius of curvature ρ and radius of torsion σ of the curve	3+3
$r = (a \cos u, a \sin u, a \cos 2u)$ at $u = \frac{\pi}{4}$ are $\rho = \frac{5a}{4}$ and $\sigma = \frac{5a}{6}$.	
8. (a) Find the equation of the osculating plane at a point u of the curve $r = (a \cos u, a \sin u, bu)$	3
(b) Find the Serret-Frenet approximation of the curve $r = (\cos u, \sin u, u)$ at $u = \frac{\pi}{2}$.	3

(b) Find the Serret-Frenet approximation of the curve $r = (\cos u, \sin u, u)$ at $u = \frac{\pi}{2}$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/2023

9.	Prove that the tangent plane to the surface $xyz = a^3$ and the coordinate planes bound a constant volume.	6
10.	Define developable surface. Prove that a surface is developable if and only if the specific curvature is zero at all points.	1+5
11.	Find the curvature and torsion of the locus of centre of spherical curvature.	3+3
12.(a)) Prove that the asymptotic lines are orthogonal if and only if the surface is minimal.	3
(b)) Show that the parametric curve on the surface $(u \cos v, u \sin v, v)$ are asymptotic lines.	3

GROUP-C

Answer any two questions $12 \times 2 = 24$

13.(a) Show that the necessary and sufficient condition that a curve be a helix is that
$$[r^{IV}, r''', r''] = -\kappa^5 \frac{d}{ds} \left(\frac{\tau}{\kappa}\right) = 0.$$

- (b) Prove that the geodesic curvature of a geodesic on a surface is zero and 6 conversely.
- 14. Prove that the shortest distance between the principal normal at two consecutive 6+6 points on a curve is

$$\frac{\rho \, ds}{\sqrt{\rho^2 + \sigma^2}}$$

and the line of this distance divides the radius of curvature in the ratio ρ^2 : σ^2 .

15.(a) Define first fundamental form. Prove that the first fundamental form is invariant 1+5 under a transformation of parameters.

(b) Show that the curve r = r(s) is asymptotic line if only if $\frac{dr}{ds} \cdot \frac{dN}{ds} = 0$, where N 4+2 is the surface normal. Write the necessary and sufficient condition for a curve to be a geodesic.

- 16.(a) Prove that the curves of the family $\frac{v^3}{u^2}$ = constant are geodesics on a surface 6 with the metric $ds^2 = v^2 du^2 - 2uv du dv + 2u^2 dv^2$, u > 0, v > 0.
 - (b) Define normal curvature. Find the normal curvature of the right angular 1+5 helicoid $r(u, v) = (u \cos v, u \sin v, cv)$ at a point on it.

DSE-4B

THEORY OF EQUATIONS

GROUP-A

	Answer any <i>four</i> questions	3×4 = 12
1.	If α , β , γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, then find the value of $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$.	3
2.	Find the remainder when $2x^4 - 6x^3 + 7x^2 - 5x + 1$ is divided by $(2x - 3)$.	3
3.	Solve the equation $4x^4 - 4x^3 - 13x^2 + 9x + 9 = 0$ given that the sum of two roots is zero.	3
4.	Reduce the reciprocal equation $x^5 - 6x^4 + 7x^3 + 7x^2 - 6x + 1 = 0$ to its standard form.	3
5.	Apply Descartes' rule of sign to determine the nature of the roots of the equation $x^{10} - 1 = 0$.	3
6.	Obtain the equation whose roots are twice the roots of the equation $x^3 + 3x^2 + 4x + 5 = 0$.	3

GROUP-B

Answer any <i>four</i> questions	$6 \times 4 = 24$
----------------------------------	-------------------

7.	If α be an imaginary root of the equation $x^7 - 1 = 0$, find the equation whose	6
	roots are $\alpha + \alpha^6$, $\alpha^2 + \alpha^5$, $\alpha^3 + \alpha^4$.	

- 8. Solve the following equation by Ferrari's method: $x^{4} + 12x - 5 = 0$
- 9. Apply Sturm's theorem to prove that the equation $x^3 7x + 7 = 0$ has two roots 6 lying between 1 and 2, and one root lying between -4 and -3.
- 10.(a) Show that the equation $2x^7 + 3x^4 + 3x + k = 0$ has at least four complex roots 2 for all values of k.
 - (b) If α is a root of the equation $x^4 + px^3 6x^2 px + 1 = 0$, then prove that $\frac{1+\alpha}{1-\alpha}$ 4 is also a root of it.
- 11.(a) Find the multiple roots of the equation $x^{4} - 2x^{3} - 11x^{2} + 12x + 36 = 0.$ 4
 - (b) Find the value of $x^3 7x^2 2x + 88$ when $x = 5 + i\sqrt{3}$.

2

6

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHDSE4/2023

- 12.(a) Find the equation whose roots are squares of the differences of the roots of the equation $x^3 + x + 2 = 0$.
 - (b) Transform the equation $x^4 + 4x^3 + 7x^2 + 6x 4 = 0$ into one in which the terms 3 involving x^3 is absent.

GROUP-C

Answer any *two* questions $12 \times 2 = 24$

4

13.(a) If $(x^2 + px + 1)$ be a factor of $(ax^3 + bx + c)$, then prove that $a^2 - c^2 = ab$.

- (b) If the equation $x^n nqx + (n-1)r = 0$ has a pair of equal roots, show that $q^n = r^{n-1}$.
- (c) Show that if the equation $x^3 ax^2 + bx c = 0$ has a pair of roots of the form $4 \alpha(1 \pm i)$ where α is real, then $(a^2 2b)(b^2 2ac) = c^2$.
- 14.(a) If α , β , γ are the roots of the equation $x^3 3x^2 + x 1 = 0$, then find the equation whose roots are

$$\alpha\beta + \frac{1}{\alpha} - \frac{1}{\beta}, \beta\gamma + \frac{1}{\beta} - \frac{1}{\gamma}, \gamma\alpha + \frac{1}{\gamma} - \frac{1}{\alpha}.$$

- (b) If $\frac{p}{q}$ is a root of $a_0x^n + a_1x^{n-1} + ... + a_{n-1}x + a_n = 0$, where $a_0, a_1, ..., a_{n-1}, a_n$ are integers and p, q are integers prime to each other, then prove that q is a factor of a_0 and p is a factor of a_n .
- 15.(a) If $\alpha_1, \alpha_2, ..., \alpha_n$ be the roots of $x^n + p_1 x^{n-1} + ... + p_{n-1} x + p_n = 0$, then find the value of $(\alpha_1^2 + 1)(\alpha_2^2 + 1)...(\alpha_n^2 + 1)$.
 - (b) If α , β , γ are the roots of $x^3 + px + q = 0$, prove that $6S_5 = 5S_2S_3$, where $S_r = \sum \alpha^r$.
- 16.(a) Find the relation between a, b, c, d so that the product of two roots of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ is 1.

-×-

(b) Show that the equation $(x-a)^3 + (x-b)^3 + (x-c)^3 + (x-d)^3 = 0$, where 6 *a*, *b*, *c*, *d* are positive and not all equal, has only one real root. 6