North Bengal St. Xavier's College Department of Computer Science & Application LESSON PLAN session 2024-2025

Session: 2024-25

S \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
Teacher:	Partha S Dutta	Designation:	Assistant Professor
Semester	1 st	Course	BCA [SEC]
Lesson Type	Theory + Practical	Paper:	Basic Programming in Python
Lectures	30 TH + 30 LAB	Teaching Method:	Chalk & Talk, PPT,LAB

Learning Objectives

• The course is designed to introduce programming concepts using Python to students.

• The course aims to develop structured as well as object-oriented programming skills using Python.

• The course also aims to achieve competence amongst its students to develop correct and efficient Python programs to solve problems in their respective domains.

Month	Week	Topics
	Week 1	Brief History of Python, Python Versions, Installing Python, Environment Variables Introduction to Python and installation: Beginning with Python programming: Why to use Python: Working with Python
July	Week 2	Getting Help,Dynamic,Types,Python Reserved Words,Naming Conventions .Data types in Python and Practical for some basic programme.
	Week 3	Basic Syntax, Comments, String Values, String Operator
	Week 4	StringMethods, The Data Types, Conversion FunctionsformatMethod, Numeric
	Week 5	Simple Output, Simple Input, The % Method, The print Function
	Week 1	Indenting Requirements, The if Statement. Practical to perform simple programme.
August	Week 2	Different Types of operators in Python.
	Week 3	The while Loop, For loop. Practical to perform simple programme.
	Week 4	Stack and queue implementation in python
	Week 5	break and continue statement
	Week 1	Lists and Methods
September	Week 2	Tuples and different methods with example
	Week 3	Dictionary and Sorting Dictionaries
	Week 4	Lab Practice for different problem.
Week 1 Introduction, Defining Your Own Fun Number of Arguments Scope		Introduction, Defining Your Own Functions, Parameters, Variable Number of Arguments Scope

November	Week 2	Function Documentation, Keyword and Optional Parameters Passing Collections to a Function, Lambda, Inner Functions	
november	Week 3	Errors, Runtime Errors, The Exception Model, Exception Hierarchy	
	Week 4	Revision Sessions of Theory and LAB	

OUTCOMES:

On completion of this course students will be able to develop the emerging applications of relevant field using Python.

Session: 2024-25

Teacher:	Partha S Dutta	Designation:	Assistant Professor
Semester	3rd	Course	BCA
Lesson Type	Theory + Practical	Paper:	Data Structure through C
Lectures	30 TH + 30 LAB	Teaching Method:	Chalk & Talk, PPT,LAB

Course Objectives:

1. Allow to assess how the choice of data structures and algorithm design methods impacts the performance of programs

2. To choose the appropriate data structure and algorithm design method for a specified application.

3. To solve problems using data structures such as linear lists, stacks, queues, binary trees, binary search trees, and graphs and writing programs for these solutions.

4. To efficiently implement the different data structures and solutions for specific problems

Month Week Topics		Topics
	Week 1	Introduction: Elementary data organization, Data Structure definition, Data type vs. data structure, Categories of data structures
July	Week 2	Data structure operations, Applications of data structures, Algorithms complexity and time-space tradeoff, Big-O notation
	Week 3	Strings: Introduction, strings, String operations, Pattern matching algorithms
	Week 4	Arrays: Introduction, Linear arrays, Representation of linear array in memory
	Week 5	Array Traversal, Insertions, Deletion in an array, Multidimensional arrays, Parallel arrays, Sparse matrix
	Week 1	Linked List: Introduction, Array vs. linked list, Representation of linked lists in memory, Traversal, Insertion
August	Week 2	Garbage collection, Applications of linked lists. Algorithm of insertion/ deletion in SLL
	Week 3	Stack: primitive operation on stack, algorithms for push and pop. Representation of Stack as Linked List and array

	Week 4	Stacks applications : polish notation, recursion	
	Week 5	Introduction to queues, Primitive Operations on the Queues, Circular queue, Priority queue	
	Week 1	Representation of Queues as Linked List and array, Applications of queue	
September	Week 2	Algorithm on insertion and deletion in simple queue and circular queue	
	Week 3	Trees - Basic Terminology, representation, Binary Trees, Tree Representations using Array & Linked List	
	Week 4	Basic operation on Binary tree, Traversal of binary trees: Inorder, Preorder &postorder, Applications of Binary tree	
	Week 1	Algorithm of tree traversal with and without recursion	
November	Week 2	Introduction to graphs, Definition, Terminology, Directed, Undirected & Weighted graph, Representation of graphs	
	Week 3	Revision Sessions of Theory	
	Week 4	Revision Sessions of LAB	

<u>Course Outcomes:</u> At the end of this course student will:

CO1) Analyze the concepts of algorithm evaluation and find time and space complexities for searching and sorting algorithms. CO2) Implement linear data structure such as stacks, queues, linked lists and their applications.

CO3) Implement basic operations on binary trees

CO4) Demonstrate the representation and traversal techniques of graphs and their applications

Name of the Teacher: PARTHA SARATHI DUTTA Designation: Assistant Professor Course: Computer Science(H)&BCA (H) Semester: VPaper: DSE54-E3 [Numerical Methods] Lesson Type: Theory Duration: 1 Hour

Unit/Topics Covered	Course Objective	Teaching Method	Expected learning outcome
Unit 1: Introduction		with Black board will be used. Teacher will also use power point presentation.	On successful completion of the course, students will be able to develop and apply the appropriate numerical techniques for the problem, interpret the results, and assess accuracy.
Unit 2: Iterative methods		with Black board will be used. Teacher will also use	

Unit 3: Interpolation	This course enables the students to understand the basic concepts of interpolation.	with Black board will be used. Teacher will also use power point presentation.	course, students will be able to
Unit 4: Numerical integration	This course enables the students to understand the basic concepts of Numerical integration.	with Black board will be	
Unit 5: Extrapolation methods	This course enables the students to understand the basic concepts of Numerical differentiation.	with Black board will be	course, students will be able to
Unit 6: Eigen- values & Eigen- vectors	This course enables the students to understand the basic concepts of Eigen values and Eigen vectors.	6	*
Unit 7: Fitting	This course enables the students to understand the basic concepts of different curve fitting techniques.	with Black board will be	course, students will be able to

Name of the Teacher: PARTHA SARATHI DUTTA Designation: Assistant Professor Course: Computer Science (H) &BCA (H) Semester: VPaper: DSE54L-E3 [Numerical Methods] Lesson Type: LAB Duration: 2Hour

Course Objectives

This course enables the students

- To solve simultaneous linear algebraic using various methods.
- To evaluate definite integrals using numerical integration
- To know problem- solving through (computer language)programming.

Course Outcomes

On successful completion of the course, students will be able to

- 1. Familiarize with the programming environment for numerical methods.
- 2. Develop proficiency skills to solve the algebraic equations.
- 3. Evaluate the definite integrals using computer programming techniques.

List of Practical (Using MATLAB/SCILAB/MAPLE)

- 1. Solution of simultaneous linear algebraic equations- Gauss Elimination Method
- 2. Solution of simultaneous linear algebraic equations- Gauss Jordan Method
- 3. Solution of simultaneous linear algebraic equations- Gauss Jacobi Method
- 4. Solution of simultaneous linear algebraic equations- Gauss SeidalMethod
- 5. Computing Lagrange's interpolating polynomial
- 6. Computing Newton's interpolating polynomial
- 7. Numerical Integration Simpson's one third rule
- 8. Numerical Integration Simpson's three eight rule
- 9. Numerical Integration Trapezoidal rule
- 10. Solution for ordinary differential equation-Euler method.
- 11. Solution for ordinary differential equation- Runge Kutta Second order.
- 12. Find the roots of the equation by bisection method.
- 13. Find the roots of the equation by Regula–Falsi method.
- 14. Find the roots of the equation by Newton's method.
 - a. Find the solution of a system of nonlinear equation using Newton's method.

Session: 2024-25			
Teacher:	Partha S Dutta	Designation:	Assistant Professor
Semester	2nd	Course	B.Sc(Computer Sc.)

Lesson Type	Theory	Paper:	Discrete Structures (MAJ3)
Lectures	45 Lectures	Teaching Method:	Chalk & Talk, PPT

Course objective:

This course will discuss fundamental concepts and tools in discrete mathematics with emphasis on their applications to computer science. Topics include logic and Boolean circuits, sets, functions, relations, deterministic algorithms and randomized algorithms, analysis techniques based on counting methods and recurrence relations, trees and graphs.

/enn
elations.
al Order
f Functions.
of Functions,
s.
nutations and
of Generating
n of Graphs
Minimum

Learning Outcomes:

After completion of the course students are expected to be able to:

- 1. Analyze logical propositions via truth tables.
- 2. Prove mathematical theorems using mathematical induction.

- 3. Understand sets and perform operations and algebra on sets.
- 4. Determine properties of relations, identify equivalence and partial order relations, sketch relations.
- 5. Identify functions and determine their properties.
- 6. Define graphs, digraphs and trees, and identify their main properties
- 7. Evaluate combinations and permutations on sets.

Name of the Teacher: PARTHA SARATHI DUTTA Designation: Assistant Professor Course: Computer Science (H) Semester: VI Paper: CC62 [Computer Graphics] Lesson Type: Theory Duration: 1 Hour

Unit/Topics Covered	Course Objective	Teaching Method	Expected learning outcome
Unit 1: Introduction	This course presents an introduction to computer graphics designed to give the student an overview of fundamental principles.	Lecture method along with power point presentation	Upon completion of the course, students will be able to have a knowledge and understanding of the structure of an interactive computer graphics system, and their application.
Unit 2: Graphics Hardware	This course makes the student to understand about the video and raster scan displays and their storage. Also to make the student to understand the usage of input/output devices and its working	power point presentation	Upon completion of the course, students will be able to have knowledge about the architecture of display unit and different input/ouput devices used in computer graphics.
Unit 3: Fundamental Techniques in Graphics	the student to understand the	Black board will be used. Teacher will also use power point presentation	Upon completion of the course, students will be able to have a knowledge and understanding of geometrical transformations and 2D viewing, representing 3D geometrical objects and understanding of the various clipping algorithms
Unit 4: Geometric Modelling	The course objective relies on the student to understand the concept of method of Modelling.		students will be able to create
Unit 5: Visible Surface determination	The course objective relies on the student to understand the concept of hidden-surface removal.		Upon completion of the course, students will be able to have knowledge and understanding various visible surface detection algorithms.

Unit 6: Surface	In this course the student will Lecture method know about the concept of power point pre-	sentation students will be able to have a
rendering	shading, illumination, and shadows .Also basic colour models and animation will be discussed.	knowledge and understanding about shading technique, different colour model and computer animation.

Name of the Teacher: PARTHA SARATHI DUTTA Designation: Assistant Professor Course: ComputerScience (H) Semester: VIPaper: CC62L [Computer Graphics] LessonType:LABDuration: 2Hour

Course Objectives

- To describe characteristics and functioning of common graphics input/output devices
- To learn the basic principles of 3- dimensional computer graphics
- ToProvideanunderstandingofhowtoscanconvertthebasicgeometricalprimitives, how to transform the shapes to fit them as per the picture definition

• To provide an understanding of mapping from a world coordinates to device coordinates, clipping, and projections.

Course Outcomes

- List the basic concepts used in computer graphics.
- Implement various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping.
- Describe the importance of viewing and projections.

List of Programs

- 1. Write a program to implement Bresenham's line drawing algorithm.
- 2. Write a program to implement mid-point circle drawing algorithm.
- 3. Write a program to clip a line using Cohen and Sutherland line clipping algorithm.
- 4. Write a program to clip a polygon using Sutherland Hodgeman algorithm.
- 5. Write a program to apply various 2D transformations on a 2D object (use homogenous coordinates).
- 6. Write a program to apply various 3D transformations on a 3D object and then apply parallel and perspective projection on it.

7. Write a program to draw Hermite/Bezier curve.

Name of the Teacher: PARTHA SARATHI DUTTA Designation: Assistant Professor Course: Computer Science (H)& BCA (H)Semester: VIPaper: DSE64P [Project] LessonType: Project Duration: 2Hour

Course Objectives

The main objective of this project course is to provide learners a platform to demonstrate their practical and theoretical skills gained during the last semesters of study in their course. During project development students are expected to define a project problem, do requirements analysis, systems design, software development, apply testing strategies and do documentation with an overall emphasis on the development of a robust, efficient and reliable software systems. Students are encouraged to spend maximum time of the sixth semester working on a project. Topics selected should be complex and large enough to justify as final semester project. The courses studied by the students during the BCA/Computer science Programme provide them the comprehensive background knowledge on diverse subject areas in computer science such as computer programming, data structure, DBMS, Computer Organization, SAD, Software Engineering, Computer Networks etc., which will be helping students in doing project work.

Course Outcomes

Upon successful completion of the course, students will be able to:

- Know develop the software project.
- Learn developing methodology of software project.
- Understand tools and techniques of developing software.
- Learn critical thinking skills and inquiring skills through application-oriented project development inComputer science & Application in a team-work environment.
- Learn problem solving skills.
- Learn to develop skills to initiate an application-oriented project in the areas of Computer science & Application.

Name of the Teacher: Partha Sarathi Dutta Designation: Assistant Professor Course: BCA (H)Semester: VI Paper: CC14 [Design and Analysis of Algorithm] Lesson Type: Theory Duration: 1 Hour

Unit/Topics Covered	Course Objective	Teaching Method	Expected learning outcome
Unit 1:	This course will prepare the students to develop the idea about	e	The successful completion of this lesson will enable the
Introduction (5 Lectures)	the concept of Basic Design and Analysis techniques of Algorithms Correctness of Algorithm		students to understand how to design and analyses an algorithm

Unit 2: Algorithm nTechniques (8 Lectures)	This course will prepare the students to develop the idea about the conceptof different techniques of algorithm like Iterative techniques, Divide and Conquer, Dynamic Programming, Greedy Algorithms		The successful completion of this lesson will enable the students to know about different algorithm technique.
Unit 3: Sorting and Searching Techniques (20 Lectures)	This course will prepare the students to develop the idea about different sorting and searching method Elementary sorting techniques, Advanced Sorting techniques, Sorting in Linear Time Searching Techniques, Medians & Order Statistics, complexity analysis.	with power point presentation Laboratory work.	Upon the successful completion of this lesson Students will be able to implement different sorting and searching technique.
Unit 4: Lower gTechniques (5 Lectures)	This course will prepare the students to develop the idea about Decision Trees and finding its complexity	with power point	Upon the successful completion of this lesson Studentswillbeabletowrite algorithm and implement the logic for decision tree.
Unit 5: Balanced Trees (7 Lectures)	This course will prepare the students to develop the idea about Red-Black Trees, how is it different from an AVL tree, its properties and the operation on Red black tree	with power point presentation Laboratory work.	Upon the successful completion of this lesson Students will be able to write C programs for creating a Redblack tree.

Unit 6: Advanced sTechnique (5 Lectures)	Analysi	This course will prepare the students to develop the idea about Amortized analysis where the student will analyze a sequence of operations and guarantee a worst case average time which is lower than the worst case time of a particular expensive operation.	with power poin presentation Laboratory work.	After learning this topic the student will You understand amortized : aggregate, accounting, potential methods
Unit 7: Graphs (5 Lectures)		This course will prepare the students to develop the idea about Graph Algorithms such as Breadth First Search, Depth First Search and its Applications, Minimum Spanning Trees.	with power poin presentation	 The students will be able to know how to : represent graphs using data structures matrices and graphs duality design algorithms that operate on graphs traverse graphs using DFS & BFS Construct the minimum spanning tree
Unit 8: String g(5Lectures)	Processin	This course will prepare the students to develop the idea about string Matching algorithm like KMP Technique	with power poin	-

Name of the Teacher: Partha Sarathi Dutta Designation: Assistant Professor Course: BCA (H)Semester: VI Paper: CC14 [Design and Analysis of Algorithm] Lesson Type: Lab Duration: 2Hours

Course objectives:

- 1. Reinforce basic design concepts (e.g., pseudo code, specifications, top-down design)
- 2. Knowledge of algorithm design strategies
- 3. Familiarity with an assortment of important algorithms
- 4. Ability to analyze time and space complexity

Learning Outcomes:

Students who have completed this course should be able to

- 1. Apply design principles and concepts to algorithm design
- 2. Have the mathematical foundation in analysis of algorithms
- 3. Understand different algorithmic design strategies
- 4. Analyze the efficiency of algorithms using time and space complexity theory

List of practical performed:

- 1. Implement Insertion Sort (The program should report the number of comparisons)
- 2. Implement Merge Sort (The program should report the number of comparisons)
- 3. Implement Heap Sort (The program should report the number of comparisons)
- 4. Implement Randomized Quick sort (The program should report the number of comparisons)
- 5. Implement Radix Sort
- 6. Create a Red-Black Tree and perform following operations on it:

Insert a node

Delete a node

Search for a number & also report the color of the node containing this number.

- 7. Write a program to determine the LCS of two given sequences
- 8. Implement Breadth-First Search in a graph
- 9. Implement Depth-First Search in a graph
- 10. Write a program to determine the minimum spanning tree of a graph

11. For the algorithms at S.No 1 to 3 tests run the algorithm on 100 different inputs of sizes varying from 30 to 1000. Countthe number of comparisons and draw the graph. Compare it with a graph of $n\log n$.