FYUGP/B.Sc./MAJ/1st Sem./PHYSMAJ101/2024

UNIVERSITY OF NORTH BENGAL

B.Sc. Major 1st Semester Examination, 2024

PHYSMAJ101-PHYSICS

MATHEMATICAL PHYSICS-I

Time Allotted: 2 Hours 30 Minutes

The figures in the margin indicate full marks.

GROUP-A

1	Answer any <i>four</i> questions from the following:	$3 \times 4 = 12$
	(a) Find the direction cosines of the vector joining the points $(3, 2, -4)$ and $(1, -1, 2)$.	3
	(b) Evaluate $\oiint_{S} (3x^2\hat{i} + 2y\hat{j}) d\vec{S}$, where S is the surface of the sphere $x^2 + y^2 + z^2 = 9$.	3
	(c) If $\phi = x^3 + y^3 + z^3 - 3xyz$, then find $\vec{\nabla} \times (\vec{\nabla}\phi)$.	3.
	(d) Express $\nabla \psi$ in spherical polar co-ordinates, where ψ is a scalar quantity.	3
	(e) What do you mean by irrotational vector? Give an example.	2+1
	(f) Solve $L\frac{di}{dt} + Ri = E$.	3
	GROUP-B	
	Answer any <i>four</i> questions from the following	$6 \times 4 = 24$
2.	(a) If $\vec{V} = \vec{\omega} \times \vec{r}$, prove $\vec{\omega} = \frac{1}{2} (\vec{\nabla} \times \vec{V})$ where $\vec{\omega}$ is a constant vector.	3
	(b) Show that $\oint_{S} \vec{r} \cdot \vec{dS} = 3V$, where V is the volume enclosed by the surface S and \vec{r}	3
	is the position vector.	
3.	(a) Find the volume of the parellelepiped whose edges are represented by	2

- $\vec{A} = 2\hat{i} 3\hat{j} + 4\hat{k}$, $\vec{B} = \hat{i} + 2\hat{j} \hat{k}$ and $\vec{C} = 3\hat{i} \hat{j} + 2\hat{k}$.
 - (b) If $\phi(x, y, z) = 3x^2y y^3z^2$, find $\bar{\nabla}\phi$ at the point (1, -3, -1).
- 4. (a) Obtain the Taylor series expansion of $\log x$, about x = 1 upto five non-zero terms for x > 0.
 - (b) Find the first three terms in Taylor series expansion of $f(x) = \tan x$, about $x = \frac{\pi}{4}$.
- 5. What are the three curvilinear coordinates in spherical polar coordinates? In 2+4 connection to the Cartesian coordinates, find out the scale factors, differential arc length ds^2 , volume element and the unit vector p_n the spherical polar coordinates.
- 6. (a) Show that $\vec{\nabla} \cdot (\vec{\phi A}) = \vec{\nabla} \phi \cdot \vec{A} + \phi \vec{\nabla} \cdot \vec{A}$.

1

(b) Solve the following differential equation:

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = x^3 + x$$

4

3

3

2

4

Full Marks: 60

FYUGP/B.Sc./MAJ/1st Sem./PHYSMAJ101/2024	
7. (a) Find the value of 'P' that will make the following vectors coplanar. $\vec{a} - 3\hat{i} + 2\hat{j} + \hat{k}$, $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$, $\vec{C} = \hat{i} + \hat{j} - P\hat{k}$	2
(b) Solve the following differential equation:	4
(b) Solve the following differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$	
GROUP-C	
Answer any two questions from the following	$12 \times 2 = 24$
8. (a) Solve the differential equation:	4
$\frac{d^2 y}{dx^2} - \frac{3}{x}\frac{dy}{dx} + 16x^6 y = 0$	•
(b) Using the concept of Wronskian show that $1, x$, $\sin x$ are linearly inc	dependent. 4
(c) State the order and degree of the following differential equation:	2
$\frac{d^4 y}{dx^4} + \left(\frac{dy}{dx}\right)^3 + x^2 y = 0$	•
(d) Express the Laplacian operator in spherical polar coordinates.	2
9. (a) Verify the divergence theorem for the vector field $\vec{F} = 4xz\hat{i} - y$ using the surface of a cube bounded by the planes $0 \le x, y, z \le 1$.	$2\hat{j} + yz\hat{k}$ and 6
(b) Evaluate $[\nabla \cdot (r^n \vec{r})]$. Show that $r^n \vec{r}$ is solenoidal for $n = -3$.	5+1
10 (a) State the Stokes' theorem.	2
(b) Verify Stokes' theorem for the function $\vec{f} = xy\hat{i} + 2yz\hat{j} + 3zx\hat{k}$ triangular shaded area of the figure below.	à using the 5
z 2 0 2 y	

- (c) If $\phi = 3r^2 4\sqrt{r} + 6r^{-1/3}$, find $\vec{\nabla}\phi$.
- (d) If $\vec{\nabla} \times \vec{A} = \frac{\partial \vec{B}}{\partial t}$, then show that $\vec{\nabla} \cdot \vec{B}$ is independent of t.

11.(a) Solve the differential equation:

$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$$

(b) Using Green's theorem evaluate $\int_C [(2x^2 - y)dx + (x^2 + y^2)dy]$, where C is the boundary 4

3

2

5

3

of the surface in x-y plane enclosed by x-axis and the semicircle $x^2 + y^2 = 1$.

(c) Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where $\vec{F} = (6x - 2y)\hat{i} + x^2\hat{j}$ and C is the line segment from (6, -3) to (6, 3).

2