

NORTH BENGAL ST.XAVIER'S COLLEGE

Lesson Plan for 2nd Semester (Revised FYUGP 2024-25)

SUBJECT-MATHEMATICS

MAJOR <u>PAPERS</u> :

A. Real Analysis**B.** Differential equations

A.

PAPER- MAJOR COURSE PAPER NAME- *REAL ANALYSIS* PAPER CODE -MATHMAJ203

Course Objectives

By the end of this course, students will:

- 1. Understand the fundamental properties of real numbers, including completeness, order properties, and density.
- 2. Analyze sequences and series, including their convergence, limits, and associated theorems.
- 3. Develop an in-depth understanding of limits and continuity of functions, with rigorous $\varepsilon \delta$ definitions.
- 4. **Explore uniform continuity and differentiability**, applying concepts to advanced problems.
- 5. Gain proficiency in convergence tests for series, including absolute and conditional convergence.

Course Learning Outcomes

Upon successful completion of the course, students will be able to:

- 1. Explain and apply the completeness property of real numbers in proofs and problem-solving.
- 2. Determine the convergence of sequences and series using rigorous mathematical arguments.
- 3. Use the ε - δ definition to prove function limits and continuity.
- 4. **Analyze differentiability and its implications**, including the Mean Value Theorem.
- 5. **Apply various convergence tests** (comparison test, root test, ratio test, etc.) to infinite series.

Unit	Topics	Total Classes	Pedagogical Demonstration
Unit 1	Review of Algebraic and order properties of \mathbb{R} , ε -neighbourhood of a point in \mathbb{R} . Idea of countable and uncountable subsets of \mathbb{R} . Bounded above sets, bounded below sets, bounded sets, unbounded sets. Suprema and infima with their properties and supporting examples. Completeness property of \mathbb{R} and its equivalent properties. Archimedean property, density property of \mathbb{R} , intervals. Limit point and isolated point of a set, open set, closed set, derived set and their properties. Bolzano-Weierstrass theorem on limit point, Nested interval theorem. compact sets in \mathbb{R} , Heine-Borel Theorem.	15	 Proofs of supremum and infimum properties with examples. Density of rational and irrational numbers using interval arguments. Archimedean Property & applications in number theory. Real-world interpretation of limits and bounds in economics and physics. Graphical visualization of least upper bounds Proof of Bolzano- Weierstrass theorem using nested intervals. Understanding compactness in R

Unit 2	Sequences and Convergence	15	 Formal definition of sequence convergence with notation. Proofs of monotone convergence theorem, Sandwich theorem, and Cauchy sequence criteria. Application in Engineering models: Signal processing and error estimation. numerical sequence simulations.
	Subsequences, lim sup & lim inf		- Definitions and computations for lim sup and lim inf. - Applications in Fourier series
Unit 3	Limits and Continuity of Functions		 ε-δ definition of limits with proof examples. Intermediate Value Theorem (IVT) and graphical demonstration. Uniform continuity vs. pointwise continuity.
	Heine-Borel Theorem, Uniform Continuity		- Proof of Heine- Borel theorem and its implications for compactness. - Stepwise proof of

			uniform continuity theorem.
Unit 4	Series & Convergence Tests	15	 Tests for convergence: Comparison test, root test, ratio test, alternating series test. Proof of Cauchy criterion for series convergence.

> Assessment & Evaluation :

- Assignments Weekly problem sets covering sequences, limits, differentiability, and series convergence.
- **Proof-writing exercises** for theorems like Bolzano-Weierstrass and Mean Value Theorem.
- **Class tests** Covering each unit, one at a time to reinforce concepts.

B.

PAPER- MAJOR COURSE PAPER NAME- *DIFFERENTIAL EQUATIONS* PAPER CODE- MATHMAJ204

Course Objectives

By the end of this course, students will:

- 1. **Understand different types of differential equations**, including general, particular, explicit, implicit, and singular solutions.
- 2. Solve first-order and higher-order differential equations using various analytical methods.
- 3. Analyze the behaviour and stability of solutions through qualitative techniques.
- 4. **Study linear differential equation systems** and their applications in realworld problems.
- 5. Use power series methods and eigenvalue techniques for solving differential equations with singular points.

Course Learning Outcomes

Upon successful completion of the course, students will be able to:

- 1. **Identify and classify different types of differential equations** and solve them analytically.
- 2. Apply integrating factors, Bernoulli's equation, and transformation techniques to solve first-order differential equations.
- 3. Solve second and higher-order linear differential equations using the Wronskian, method of variation of parameters, and undetermined coefficients.
- 4. **Analyze systems of linear differential equations** and apply operator methods to solve them.
- 5. Use phase plane analysis and equilibrium point interpretation in autonomous systems.
- 6. Solve differential equations using power series methods and eigenvalue techniques.

Lesson Plan :

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
Unit 1	First-Order and Higher-Order Differential Equations	30	Mathematical Approach: - Definitions and classification of differential equations (general, particular, explicit, implicit, singular solutions). - Statement and discussion of the Existence Theorem. - Solution of exact differential equations and integrating factors. - Linear and Bernoulli's equations and transformation methods. - Clairaut's equation and singular solutions. - Solution techniques for second-order homogeneous equations: Superposition principle and Wronskian applications. - Higher-order linear equations with constant coefficients: Method of undetermined coefficients and variation of parameters. - Euler's homogeneous

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
			equation and its applications. - Second-order linear equations with variable coefficients: Reduction to normal form, change of variables. Applications: - Physics applications: Simple harmonic motion, damped oscillations, forced oscillations. - Engineering applications: Circuit analysis (RLC circuits). - Graphical visualization: MATLAB/Python- based plotting of solutions and phase portraits.
Unit 2	Systems of Linear Differential Equations	12	Mathematical Approach: - Introduction to systems of linear differential equations. - Types of linear systems and differential operators. - Operator method for linear systems with constant coefficients. - Basic theory of linear systems in

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
			normal form. - Homogeneous linear systems with constant coefficients: Two equations in two unknowns. Applications: - Coupled oscillators in physics. - Epidemiological models (SIR models in biology). - Graphical representation of solution trajectories
Unit 3	Lipschitz condition, Uniqueness , Qualitative Theory & Stability Analysis	10	Mathematical Approach: - Lipschitz condition and its role in uniqueness of solutions. - Picard's Theorem (Statement only) and iteration methods for approximating solutions. - Autonomous systems and equilibrium points. - Interpretation of phase planes and stability analysis. Applications: - Dynamical systems in mechanics and ecology. - Graphical visualization of phase

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
			portraits and equilibrium analysis
Unit 4	Power Series Solutions & Eigenvalue Problems	8	Mathematical Approach: - Power series solutions around ordinary points. - Solution around a regular singular point using Frobenius method. - Basic eigenvalue problems and differential equations. Applications: - Quantum mechanics (Schrödinger equation solutions). - Structural engineering (vibrations of beams and plates). - Computational methods using power series expansion.

- Assessment & Evaluation :
- Assignments (20%)
 - Weekly problem sets covering **ODEs**, **PDEs**, **stability analysis**, **and power series solutions**.
 - **Proof-writing exercises** for fundamental theorems.
- Class Tests: Complete evaluation with Clas Tests

NORTH BENGAL ST.XAVIER'S COLLEGE

Lesson Plan for 4th Semester (FYUGP 2023-24)

SUBJECT-MATHEMATICS

MAJOR PAPERS :

- A. Theory of Real and Complex Functions
- **B.** Mechanics
- **C.** Ring Theory and Lattice Theory

A.

PAPER- MAJOR COURSE PAPER NAME- *THEORY OF REAL AND COMPLEX FUNCTIONS* PAPER CODE- UMATMAJ24006

Course Objectives :

By the end of this course, students will:

- 1. Understand the differentiability of real functions, including the algebra of differentiable functions and extrema.
- 2. Explore the Mean Value Theorem and its applications, including Darboux's theorem.
- 3. Study Taylor and Maclaurin series expansions, with applications to polynomial approximations and convex functions.
- 4. Analyze uniform convergence of sequences and series of functions, and its impact on continuity and integrability.
- 5. Understand complex functions, including the Cauchy-Riemann equations, harmonic functions, and conformal mappings.

Course Learning Outcomes :

Upon successful completion of the course, students will be able to:

- 1. Determine the differentiability of functions and apply Caratheodory's theorem.
- 2. Use Mean Value Theorems to solve inequalities and function approximations.
- 3. Expand functions into Taylor and Maclaurin series and apply them in approximation theory.
- 4. Analyze pointwise and uniform convergence and their impact on limit functions.
- 5. Understand analytic functions, conformal mappings, and bilinear transformations in complex function theory.

Lesson Plan :

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
	Differentiability and Mean Value Theorems	18	Mathematical Approach: - Differentiability of a function at a point and in an interval. - Caratheodory's theorem and its significance. - Algebra of differentiable functions, rules for sum, product, and composition. - Relative extrema and the Absolute Extrema Theorem. - Rolle's theorem, Lagrange's and Cauchy's Mean Value Theorems, proofs and graphical interpretation. - Darboux's Theorem (Intermediate Value Property of Derivatives). - Applications of MVT to inequalities and polynomial approximations. Applications: - Physics: Velocity and acceleration interpretation using Mean Value Theorems. - Optimization problems in economics and engineering. - Numerical demonstration by problem solving.
Unit 2	Taylor and Maclaurin Series	10	Mathematical Approach: - Taylor's Theorem with Lagrange's and Cauchy's form of remainder. - Applications to convex functions and function

Unit	Topics	Total	Pedagogical Demonstration &
Om	Topics	Classes	Applications
			 approximation. Taylor's and Maclaurin's Series expansions of exponential, trigonometric, logarithmic, and rational functions. Applications: Error estimation in numerical analysis. Polynomial approximations in machine learning and data science. Graphical representation using MATLAB and Wolfram
Unit 3	Sequences and Series of Functions	12	Alpha. Mathematical Approach: - Pointwise and uniform convergence of sequences of functions. - Theorems on continuity, differentiability, and integrability of the limit function. - Series of functions and their sum functions. - Cauchy criterion for uniform convergence and Weierstrass M-Test. Applications: - Applications in Fourier Series expansion. - Stability analysis of function approximations in physics and engineering.

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
			- Graphical representation of uniform convergence.
Unit 4	Theory of Complex Functions	20	Mathematical Approach: - Geometric representation of complex numbers,Stereographic projection. - Complex functions and their continuity and differentiability. - Analytic functions and the Cauchy-Riemann equations. - Harmonic functions and Milne's method (Statement only). - Conformal mappings and Bilinear transformations. Applications: - Fluid dynamics and electrostatics: Use of complex functions in flow analysis. - Complex mappings in control systems and signal processing.

Assessment & Evaluation :

• Assignments: 1. Weekly problem sets covering differentiability, Taylor expansions, and complex function properties.

2. Proof-writing exercises for fundamental theorems like Mean Value Theorem and Cauchy-Riemann Equations.

Mathematical rigor: 1. Stepwise derivations of fundamental theorems and concepts.

 Real-world relevance:
 Applications in fluid dynamics, electrostatics, and signal processing.
 Interactive learning

methods: Problem-solving sessions, discussions, and computational projects.

B.

PAPER- MAJOR COURSE PAPER NAME- *MECHANICS* PAPER CODE- UMATMAJ24007

Course Objectives :

By the end of this course, students will:

- 1. Understand the motion of particles and rigid bodies, including Newtonian mechanics and conservation principles.
- 2. Analyze two-dimensional and three-dimensional motion using Cartesian and polar coordinates.
- 3. Study central force motion and Kepler's laws, and apply them to celestial mechanics.
- 4. Learn about forces in equilibrium, virtual work, and Poinsot's central axis in statics.
- 5. Apply principles of potential energy, stable and unstable equilibrium in force fields.

Course Learning Outcomes :

Upon successful completion of the course, students will be able to:

- 1. Model and solve equations of motion for particles and rigid bodies.
- 2. Understand the concepts of linear and angular momentum and their conservation.
- 3. Apply Kepler's laws and inverse square law to planetary motion.
- 4. Analyze equilibrium conditions for forces in two and three dimensions.
- 5. Use the principles of virtual work and central axes to solve static problems.

Lesson Plan :

4 Dynamics

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
Unit 1	Motion of a Particle	30	Mathematical Approach: - Equations of motion along a straight line, velocity-time graphs. - Simple harmonic motion (SHM): Differential equation and solution. - Motion in two dimensions using Cartesian and polar coordinates. - Tangential and normal components of velocity and acceleration. - Central forces and central orbits, derivation of equations. - Motion under inverse square law: Applications in celestial mechanics. - Kepler's Laws of planetary motion, derivations and proof. - Modeling of ballistic motion, solving differential equations for projectile motion. Applications: - Physics: Understanding SHM

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
			in pendulums and oscillatory systems. - Astronomy: Kepler's Laws in planetary motion, Earth-Sun system modeling. - Simulation of central force motion using Python/Matlab.
	System of Particles and Rigid Body Motion		Mathematical Approach: - Definition and motion of center of mass, center of mass of composite systems. - Principles of conservation of linear and angular momentum, impact problems. - Rigid body motion, definition of center of gravity. - Moment and product of inertia, derivation and calculations. - Radius of gyration, derivation and applications. - Theorems of parallel and perpendicular axes, proof and applications. - Computation of moment of inertia for various geometries. - Routh's law and applications in rotational mechanics. Applications: - Engineering: Moment of inertia in bridge and building

Unit	Topics	Pedagogical Demonstration & Applications
		design. - Physics: Application of angular momentum conservation in rotating bodies. - inertia calculations for different objects.

Statics

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
Unit 2	Co-Planar Forces & Virtual Work	30	Mathematical Approach: - Equilibrium conditions for coplanar forces, static equilibrium equations. - Astatic equilibrium, positions of equilibrium under given forces. - Principle of virtual work, derivation and applications. - Converse of the principle of virtual work, proof and applications: - Engineering: Structural stability in bridges, buildings, and mechanical systems. - Physics: Application of virtual work in force balancing.

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
			- Demonstration using MATLAB/Python: Virtual work calculations and force distributions.
	Forces in Three Dimensions & Poinsot's Central Axis		Mathematical Approach: - Poinsot's central axis, derivation of equations. - Moment of a force about a line, proof of moment formula. - Axis of a couple and resultant of a system of couples, proof and applications. - Reduction of a system of forces on a rigid body, transformation techniques. - Resultant force as an invariant quantity, proof and application. - Definition of wrench, pitch, intensity, and screw, mathematical formulation. - Condition for a given force system to have a single resultant. Applications: - Physics: Force balancing in mechanical systems and aerodynamics. - Engineering: Structural

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
			design of bridges, towers, and mechanical parts. -Simulation: Force system reduction and central axis visualization.
	Stable and Unstable Equilibrium & Conservative Fields		Mathematical Approach: - Definition of stable and unstable equilibrium, derivation of conditions. - Field of forces and conservative force fields, applications. - Potential energy of a system, derivation of expressions. Applications: - Physics: Stability analysis of planetary orbits. - Engineering: Application of equilibrium principles in mechanical design. - Numerical simulations using Python: Stability analysis of potential energy systems.

> Assessment and Evaluation :

- Computational Techniques Numerical simulations of Kepler's Laws, projectile motion, and virtual work principles.
- Real-World Applications Applying dynamics and statics in physics, engineering, and mechanics.

• Interactive Learning – Problem-solving sessions, tutorial discussions, and quizzes to reinforce understanding.

C.

PAPER- MAJOR COURSE PAPER NAME- *RING THEORY AND LATTICE THEORY* PAPER CODE- UMATMAJ24008

Course Objectives:

By the end of this course, students will :

- 1. To introduce fundamental concepts of ring theory and their applications.
- 2. To explore different types of rings, their properties, and algebraic structures.
- 3. To study ideals, quotient rings, and ring homomorphisms.
- 4. To develop an understanding of lattice theory and its significance in algebra.
- 5. To apply theoretical concepts to problem-solving and proofs.

Course Outcomes:

Upon successful completion, students will be able to:

- 1. Understand and identify different types of rings and their characteristics.
- 2. Work with concepts such as zero divisors, units, and integral domains.
- 3. Perform operations on ideals and quotient rings.
- 4. Understand and apply the fundamental isomorphism theorems.
- 5. Analyze ordered sets and lattice structures in algebraic settings

Lesson Plan:

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
Unit 1	Introduction to Ring Theory - Definition and properties of rings - Examples: Z _n , Z[i], Q[i], matrix rings - Polynomial rings and function rings and function rings - Divisors of zero, units, cancellation property - Characteristics of rings - Integral domains and fields	18	 Lecture & Visualization Use of Venn diagrams to compare different algebraic structures (Groups vs. Rings vs. Fields). Historical context: How ring theory evolved from number systems. Concrete Examples: Representing Z_n with clock arithmetic, polynomial rings as function transformations. Concept Mapping & Interactive Discussion Concept map comparing rings, integral domains, and fields. Guided discovery: Given a set, students determine whether it is a ring, integral domain, or field through group discussion. Real-life analogy: Applying modular arithmetic to encryption and hashing functions.

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
Unit 2	Ideals and Quotient Rings - Definition of ideals, prime and maximal ideals - Quotient rings and homomorphism properties Integral Domains and Fields - Divisors of zero, units, cancellation property - Characteristics of rings - Integral domains and fields	16	Lecture & Visualization - Use of Venn diagrams to compare different algebraic structures (Groups vs. Rings vs. Fields). - Historical context: How ring theory evolved from number systems. - Concrete Examples: Representing Z _n with clock arithmetic, polynomial rings as function transformations. Group Work & Practical Examples - Hands-on problem-solving: Students work in groups to construct different types of ideals in polynomial rings. - Real-world analogy: How modulo arithmetic creates quotient rings in coding theory (e.g., error correction). - Graphical representation: Visualizing cosets as partitions in quotient rings.

Unit	Topics	Total Classes	Pedagogical Demonstration & Applications
Unit 3	Ring Homomorphism and Isomorphism - Definition and examples - Isomorphism theorems (I, II, III) - Application of homomorphisms	10	Proof-Based Learning & Theorem Application - Step-by-step proof demonstrations of the First, Second, and Third Isomorphism Theorems using structured proofs. - Student-led problem- solving: Small groups verify if given structures are isomorphic.
Unit 4	Lattice: Definition, examples and basic properties of ordered sets	16	Diagrammatic Teaching & Case Studies - Drawing Hasse diagrams to represent ordered sets and lattices. - Hands-on sorting activity: Arranging different subsets to understand lattice structures. - Applications in computer science: How lattices are used in database indexing and logic circuits
	Modular and Distributive Lattices		Collaborative Learning & Real-World Examples

Unit	Topics	Pedagogical Demonstration & Applications
	- Definition and examples - Properties and real- world applications	 Boolean Algebra Connection: Demonstrating modular and distributive lattices in digital circuit design (AND, OR, NOT gates). Student research presentations: Groups present on applications of lattice theory in cryptography and AI. Case study: Exploring decision trees in machine learning as lattices.

Assessment and Evaluation:

- **Conceptual understanding** via quizzes and exams.
- **Problem-solving proficiency** through assignments and theorem-based questions.
- **Real-world application** via projects and presentations.
- Active participation in classroom discussions and activities.